

Continuing
2 Smooth vs. Topological
Theorem (Ruberman, 90's)
Let $M = a IP^2 \pm b \overline{IP^2}$ where $a = 2n$, $b = 10n + 1$
$n > 1. (e.g. 4 \mathbb{P}^2 \pm 21 \mathbb{P}^2)$, then
$\ker\left(\pi_{\bullet}\left(\mathrm{Diff}^{\dagger}(M)\right) \to \pi_{\bullet}\left(\mathrm{Homeo}^{\dagger}(M)\right)\right) \neq 0$
In fact, 00 - generated!
3 Symplectic VS. smooth
(M, 23) symplectic 4-manifold
Theorem (Seidel, 1997): For certain special M,
S M Lagrangian 2-sphere (-2)
Let $T_s = Deha$ twist. Then even though
$T_{2}^{2} = \epsilon_{T} (Diff(M)) T_{2}^{2} is co-order in$
$\pi_{o}(Symp(M, w))$
We don't know Diff _{cs} (R ⁴)!

C. What's left to do for $Mod(M^4)$, $\pi_1(M) = 0$. (Farb-Looijenga)
Problem 1 (The Realization Problem)
$\forall A \in O(H_M)$, write down explicitly some
$F \in Homeo^+(M)$ such that $F_{\mathbf{x}} = A$.
Note: I smooth representatives always! e.g.
Diff(K3) < Homeo*(K3) index 2, so there's
a nonsmooth homeomorphism.
INPUT: Action on H2 (M,Z)
OUTPUT: Action on MDf
Note : Freedman proved surjectivity
Problem 2: Thurston - type normal forms
Problem 3: Section problems for which
subgroups $G \leq Mod(M)$ admit sections σ
Diff(M) - Mod(M) Z G

Geometric (Diff. and Alg.)
Problem 4 (Preserving structure)
Characterize which $A \in O(H_M)$ have a
representative $F \in Diff(M)$ with $F_{\star} = A$ s.t.
F preserves:
· some complex structure
· some special metrics (Ricci-Flat Einstein)
· some foliations (maybe w/ singularities)
More later.
IV. Case Study: Mod (Bl {P1,, Pr} (IP2))
A. (Complex) Blowups blow up of C^2 at \tilde{O} C^2 $B := Bl_0(C^2) := \{(x, l) : x \in l\}$
C^{-} $B := Bl(C^{2}) := \{(x, l) : x \in l\}$
$- \frac{x}{2} = \frac{1}{2} \pi \qquad \leq \mathbb{C}^2 \times \mathbb{R}^1$
C ² space
$\pi(\varkappa, L) := \varkappa$ lines

The map TT is the blow down. • B is a 2-dimensional complex manifold • $\pi^{-1}(x) = \begin{cases} x & x \neq 0 \\ CIP' & x = 0 \end{cases}$ {(0,2)} "exceptional divisor". $\cdot \pi^{-1}(0) =: e$ called the π⁻¹(0) π⁻¹(L_z) $\mathsf{Bl}_{o}(\mathbb{C}^{2}) \to \mathbb{C}^{2} - \{o\}$ is a biholomorphism. $\pi^{-1}(l_2)$ See Scorpan for good pictures! C Role C² C gets "desingularized" by the blow up. There a more general blow ups.

Now let M = any complex surface
p M any point.
$U = nbhd(p)$ parametrized by C^2 .
Let $U' = \{(z, L) \in U \times P' : z \in L\}$
$\pi \int \pi(r, l) = r.$
$\pi: U' \setminus \{p \times \mathbb{P}'\} \to U \setminus \{p\} \text{ biholomorphic}$
diffeomorphism.
ditfeomorphism.
ditfeomorphism.
Let the "blow up of M at p be
Let the "blow up of M at p " be $Bl_p(M) := (M \setminus U) \cup U' * (p \times R^1)$ $\partial U = \partial U'$

As a complex manifold,
BLp(M) doesn't depend on choice of U.
(see Griffiths - Harris)
Proposition. Let M be a complex surface,
pEM, M' := Blp(M). Then as smooth manifolds:
1. $M' \cong M \# \overline{CR}^2$ diffeo
2. $Q_{M'} = Q_{M} \oplus (-1)$
generated by exceptional divisor
iz. if $e = \pi^{-1}(p) = exceptional divisor$
$e^2 = -1$ (see hand - out)
PROOF: You! CI
(ef. the tautological line bundle over CP)
C → 1 ↓ CP'

$\frac{\text{Example.}}{e_{1}^{2} = e_{2}^{2} = -1.}$ $e_{1}^{2} = e_{2}^{2} = -1.$ $e_{1} \cong \mathbb{R}^{1} \cong S^{2}$ (consider $[e_{1} - e_{2}] \in H_{2}(M, \mathbb{Z})$ \mathbb{R}^{2} $Hen (e_{1} - e_{2})^{2} = -1 + (-1) = -2$						
<u>Claim</u> :	WE EQA	represent	[e,]-[e,] =	[\$²].		
		.				